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ABSTRACT 24 

A comprehensive mathematical program was formulated to determine simultaneously 1) an 25 
optimum number of pavement clusters, 2) cluster memberships of pavement samples, 3) cluster-26 
specific significant explanatory variables, and 4) estimated regression coefficients for Pavement 27 
Performance Models (PPMs). Simulated Annealing coupled with All-Subset Regression was 28 
proposed to solve the mathematical programming. The proposed algorithm was capable to 29 
identify and address potential multicollinearity issues. All possible combinations of the 30 
explanatory variables were examined to select the best model that provided a balance among 1) 31 
the number of PPMs; 2) the number of explanatory variables; 3) the resources required to 32 
develop, maintain, and use these models; and 4) the explanatory power. For the dataset used in 33 
this research, 6-cluster models were determined as part of the optimum solution. The predictive 34 
capabilities of the resultant models were investigated, and results showed that the models 35 
provided few prediction errors without any overfitting issues.  36 



INTRODUCTION 37 

Pavement deteriorates over time due to the combined effects of traffic and environmental factors. 38 

To keep pavement in a serviceable condition, highway agencies primarily have two alternatives: 39 

1) permit the pavement to deteriorate until its condition falls below the serviceability limit, and 40 

then perform rehabilitation or reconstruction work; or 2) intervene with the deterioration by 41 

performing a series of maintenance activities that retard the deterioration process and essentially 42 

delay the type of substantial failure requiring major rehabilitation or reconstruction.  43 

Considering that a typical cost of the maintenance is 15% to 20% of the cost for 44 

rehabilitation or reconstruction (Hajj et al. 2010), agencies are more focused on preserving and 45 

maintaining existing facilities (Davies and Sorenson 2000; Labi and Sinha 2003). However, the 46 

challenge is to find the pavement segments that require maintenance as well as appropriate times 47 

to execute such activities. Hence, there is a need to develop a proactive approach to identify 48 

potential pavement segments for improvement. Pavement performance models (PPMs) – one of 49 

several critical components required to achieve this proactive approach – seek to capture 50 

historical patterns of pavement deterioration that can be used to estimate an appropriate time for 51 

maintenance so that the condition of a pavement can be improved before a serviceability limit is 52 

reached. 53 

In practice, it is very important to achieve a balance among the number of PPMs; the 54 

number of explanatory variables; the resources required to develop, maintain, and use these 55 

models; and the associated explanatory power. To determine this balance, PPMs typically are 56 

developed by using clusters of pavement samples. Instead of estimating the cluster memberships 57 

by using statistical methods, a few predefined explanatory variables are used to assign pavement 58 



samples into clusters. In terms of performance, clusters formed in this way likely include 59 

heterogeneous pavement samples. 60 

The existing state-of-the-art methods propose Clusterwise Linear Regression (CLR) to 61 

determine pavement clusters and associated PPMs simultaneously, using a single objective 62 

function. In CLR, various clusters are formed so that homogenous pavement samples, in terms of 63 

the effects of the explanatory variables on the dependent variable of a present regression model, 64 

are assigned within a cluster (Park et al. 2015). The homogeneity of pavement samples in a 65 

cluster is defined by the effects of the observed values of explanatory variables on the estimated 66 

dependent variable, the Present Serviceability Index (PSI), by the regression model. 67 

Observations of all the pavement samples assigned to a cluster fit the same PPM such that the 68 

overall sum of squared errors (SSE) within clusters is minimal. 69 

CLR first was implemented by Spath (1979) for data partition and estimation of 70 

regression models within each cluster, simultaneously. The approach has been expanded further, 71 

and implemented in many studies (DeSarbo et al. 1989; Wedel and SteenKamp 1989; Lau et al. 72 

1999; Carbonnea et al. 2011; Schlittgen 2011; Zhen et al. 2012; Tan et al. 2013; Lu et al. 2014). 73 

However, in the field of pavement management, to the best knowledge of the authors, only four 74 

studies (Luo and Chou 2006; Luo and Yin 2008; Zhang and Durango-Cohen 2014) have been 75 

performed using CLR.  76 

In a recent study (Zhang and Durango-Cohen 2014), CLR with multiple explanatory 77 

variables was proposed to account for heterogeneity in pavement deterioration. The study used 78 

the data collected during the AASHO Road Test (Highway Research Board 1962), which is no 79 

longer the best available data nor representative of existing conditions. This data was collected at 80 

a single site, and over 50 years ago, when materials and construction techniques were different. 81 



The study estimated models with the objective of minimization of the residual sum of squares 82 

(RSS). The number of models were determined subjectively using the trends of RSS and Akaike 83 

Information Criteria (AIC) over the number of clusters. In addition, the study investigated the 84 

presence of overfitting in the CLR models, using a procedure proposed by Brusco et al. (2008). 85 

In this current study, overfitting means that most of the variations in the dependent variable 86 

appears to be explained by the estimated model; however, the actual relationship between the 87 

dependent variable and some of the explanatory variables and/or the functional form of the 88 

model is not really captured. Overfitting typically is evidenced during validation when the model 89 

is used to estimate values for the dependent variable, using data that was not used for model 90 

development. Later in this paper, the section on Model Performance provides a rigorous 91 

explanation of a procedure to determine potential overfitting in a model. 92 

To address some of the limitations of previous models, a mathematical programming 93 

framework within the CLR approach is proposed to determine simultaneously the optimal 94 

number of clusters, the assignment of segments into clusters, and the associated PPMs (Khadka 95 

and Paz, 2017b). In this study, the Bayesian Information Criteria (BIC) (Schwarz 1978) was used 96 

as the objective function. BIC penalizes more for the inclusion of additional parameters than 97 

does AIC (Kadane and Lazar 2004). On the other hand, several studies showed that the number 98 

of parameters in a model selected using AIC was overestimated (Geweke and Meese, 1981; Katz, 99 

1981; Koehler and Murphree, 1988; Kadane and Lazar 2004). 100 

BIC is one of the most popular log-likelihood-based information criteria used for model 101 

selection. As BIC is an increasing function of the error variance and free parameters to be 102 

estimated, minimizing BIC reduces unexplained variations in the dependent variable, the number 103 

of explanatory variables, or both (Uzoma and Jeremiah, 2016). In case of a large sample size, 104 



BIC is consistent in the sense that the probability of the selected model being the true model 105 

approaches ‘1’ (Rao and Wu 1989; Yang 2005; Maydeu-Olivares and García-Forero 2010; Vrieze 106 

2012, Kim et al. 2012). 107 

In addition, the proposed framework tests the significance of explanatory variables. To 108 

the best of the authors’ knowledge, all the existing literature about pavement management and 109 

PPMs estimation using CLR suffers from the limitation that variables included in the PPMs are 110 

assumed to be significant. However, the effects of variables without any evidence of significance 111 

can affect clustering and regression analyses. Therefore, heterogenous samples can be assigned 112 

together erroneously (Fowlkes et al. 1988); therefore, it becomes challenging to discover the 113 

underlying pavement clusters that exhibit similar performance behavior (Gupta and Ibrahim 114 

2007).  115 

This problem is illustrated in Figure 1, using data from the Pavement Management 116 

System (PMS) of the Nevada Department of Transportation (NDOT). In this example, 54 117 

randomly selected pavement samples were considered. Each pavement sample was represented 118 

by a dependent variable, PSI, and two explanatory variables, Age and Average Daily Traffic 119 

(ADT).  120 

The variables PSI and Age had a significant linear relationship (p-value = 0.001), as 121 

shown in Figure 1a. The estimated BIC and root mean square error (RMSE) for the model were 122 

85 and 0.2916, respectively. However, the relationship between PSI and ADT was not clear, as 123 

shown in Figure 1b. The estimated BIC and RMSE for the model were 251 and 0.4572, 124 

respectively. When both Age and ADT were included in the model as explanatory variables, the 125 

estimated BIC was increased to 90, with a slight decrease in RMSE by 0.0003. Hence, if an 126 

irrelevant variable, ADT in this example, is included in a CLR analysis without checking its 127 



significance, it increases the BIC. In addition, it causes a loss of efficiency in the model. The 128 

estimated clustering and regression models may not capture the correct underlying relationships 129 

among the variables when a variable is included in the model without sufficient evidence of its 130 

significance. 131 

Assignment of pavement samples into clusters using predefined and fixed explanatory 132 

variables, instead of estimation, introduces bias into the statistical analysis (Gupta and Ibrahim 133 

2007). The available data are not fully utilized for clustering because the performance behavior 134 

represented by historical PSI is ignored. In addition, clustering using explanatory variables that 135 

do not provide any information about the underlying clustering structure does not reveal the 136 

underlying cluster assignments. 137 

A legitimate assignment of pavement samples into homogeneous clusters to minimize the 138 

estimation error can be obtained using the relevant explanatory variables that exhibit the 139 

strongest effects on the dependent variable (Fowlkes et al. 1988; Liu and Ong 2008; and Maugis 140 

et al. 2009). The strength of the effects of explanatory variables on the dependent variable often 141 

is assessed by comparing p-values with the desired level of significance (α). A p-value represents 142 

the significance of the estimated coefficient for an explanatory variable. If the p-value for an 143 

explanatory variable is greater than α, there is not enough evidence to claim that the estimated 144 

coefficient is likely to be different from zero. In other words, changes in the explanatory variable 145 

do not reflect changes in the dependent variable. Hence, such explanatory variables having p-146 

values greater than the desired α usually are excluded from the model during model estimation 147 

process. 148 

A variable selection procedure can be utilized to select the best subset of potential 149 

explanatory variables. This procedure must distinguish between relevant and irrelevant variables 150 



in order to provide the best regression models. Typically, the fewest number of explanatory 151 

variables that sufficiently explain most of the variances in the dependent variable are selected as 152 

the best model specification. In terms of data analysis and statistics, numerous methodologies for 153 

variable selection are available in the literature (Thompson 1978; Tibshirani 1996; Baumann 154 

2003; Efron et al. 2004; Mehmood et al. 2012; Brusco 2014). In this study, the All-Subset 155 

Regression procedure (Garside 1965; Gorman and Toman 1966; Hocking and Leslie 1967; 156 

Mallows 1973; Berk 1978; Efron et al. 2004) was used to select variables for CLR analysis. All 157 

(2P-1) possible subsets of potential explanatory variables, P, were examined. BIC was used as a 158 

criterion for comparing models with different subsets of variables. 159 

It is not recommended to use least squares estimation and variable selection techniques 160 

under the presence of multicollinearity (Gunst and Webster 1975). Strongly-correlated clustering 161 

variables may overweight one or more underlying constructs and produce loss in efficiency 162 

(Ketchen and Shook 1996). Typically, multicollinearity inflates the variance of regression 163 

parameters and makes correct identification of significant variables challenging (Abdul-Wahab et 164 

al. 2005; Dorman et al. 2013; Ohlemüller et al. 2008). However, strongly correlated variables 165 

may not be a problem in all cases (Harrell 2001). In addition, if the collinearity between two 166 

variables remains constant, their estimated parameters are likely to have low standard errors; the 167 

problem would be serious if the standard errors of the correlated variables are high (Washington 168 

et al. 2011). The best way to address multicollinearity is to conduct a carefully designed 169 

experiment that considers the trade-off between removing and keeping potential explanatory 170 

variables that are expected to cause multicollinearity. Judgement and iterations are required to 171 

determine the best model specification that minimizes the effects of multicollinearity 172 

(Washington et al. 2011). 173 



This study investigated the effects of highly-correlated explanatory variables. The 174 

Variance Inflation Factor (VIF), used to examine potential issues due to multicollinearity 175 

(Marquardt 1970; Mansfield and Helms 1982), is defined as 1 (1 − 𝑅𝑅𝑖𝑖
2)⁄ , where 𝑅𝑅𝑖𝑖

2 is the R2 for 176 

an explanatory variable, Xi regressed on the remaining explanatory variables. When no 177 

explanatory variables are correlated, the VIF is equal to ‘1’. As the degree of collinearity 178 

increases, both the variance of regression coefficient and the VIF increase (Yoo et al. 2014). Tacq 179 

(1997) showed that large VIF is an indicator of multicollinearity. In general, a VIF greater than 180 

‘10’ is considered unacceptable (Neter et al. 1996; Midi et al. 2010), even though no formal rule 181 

exists in the literature. 182 

To avoid prespecifying the significance of potential explanatory variables, this paper 183 

proposes a comprehensive CLR framework that determines, simultaneously, the optimal number 184 

of pavement clusters, the assignment of segments into clusters, and the corresponding PPMs 185 

using only likely significant explanatory variables. The proposed framework simultaneously 186 

seeks for 1) the optimal number of clusters, 2) the combination of significant explanatory 187 

variables that provides the best goodness of fit, and 3) assigns segments into clusters. In the 188 

study, the likely significance of the explanatory variables was tested for each cluster model; 189 

hence, different clusters may include different significant explanatory variables.  190 

Considering the simultaneous and extensive search for significant explanatory variables 191 

and the optimal number of clusters, the PPMs developed under the proposed framework were 192 

expected to provide superior explanatory power compared to existing approaches. The proposed 193 

framework was tested using pavement data from the entire State of Nevada. The results illustrate 194 

the advantage of solving simultaneously for the three types of parameters listed above. 195 



METHODOLOGY 196 

Problem formulation 197 

This section describes a mathematical program that was formulated to describe the proposed 198 

CLR problem. Among various pavement performance measures available in the literature, PSI is 199 

a widely accepted measure that serves as a unified standard to measure pavement serviceability 200 

(Shoukry et al. 1997; Terzi 2006; Attoh-Okine and Adarkwa 2013). PSI is understood easily by 201 

both road users and legislators (Hudson et al. 2015). This study used PSI as the dependent 202 

variable, y. Multiple linear regression PPMs were estimated with functional form expressed by: 203 

yit=β0k+ ∑ βjk* xijt
J
j=1          (1) 204 

The objective function was to minimize BIC, expressed as:  205 

 Min. BIC = O+O*ln(2π)+O*ln �SSE
O

� +�δ+K-1�*ln(O)     (2) 206 

where SSE is total sum of squared errors, expressed by: 207 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ ∑ ∑ �𝛽𝛽0𝑘𝑘 + ∑ 𝛽𝛽0𝑘𝑘 ∗ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖
𝐽𝐽
𝑗𝑗=1 �

2
∗ 𝑝𝑝𝑖𝑖𝑖𝑖 ∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖, 𝑘𝑘 ∈ 𝐾𝐾𝑇𝑇𝑖𝑖

𝑡𝑡=1
𝐼𝐼
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1  (3) 208 

and the quantity (δ+K-1) is the total number of free parameters to be estimated for K clusterwise 209 

regression models (DeSarbo and Corn 1988). Intercepts (𝛽𝛽0𝑘𝑘), coefficients for cluster-specific 210 

significant explanatory variables (𝛽𝛽𝑗𝑗𝑗𝑗), the optimum number of clusters (K), and cluster 211 

memberships (𝑝𝑝𝑖𝑖𝑖𝑖) were the decision variables to be determined. In addition, the proposed 212 

mathematical programming included the following constraints: 213 

Constraints for significant variables: 214 

𝛿𝛿 = ∑ ∑ vjkjk ∀ j = 0,…,J,  k ∈ K        (4) 215 

𝑣𝑣jk = �
1, if βjk is significant; 
0, Otherwise

∀ j = 0,…,J, k ∈ K  (5) 216 



Membership constraints: 217 

∑ pik=1k ∀i ∈ I, k ∈ K         (6) 218 

𝑝𝑝ik = �1, if  sample i is assigned to cluster k;  
0, Otherwise ∀ i ∈ I, k ∈ K    (7) 219 

Constraints for feasible partitions: 220 

Ck= �i�pik=1∀i ∈ I, k ∈ K�        (8) 221 

Ck'∩Ck'' = null  ∀k' ≠ k'', k' and k''∈ K       (9) 222 

⋃ |Ck|k ∈ K = I          (10) 223 

∑ Ti ≥ n ∀i∈Ck Ck         (11) 224 

Constraints for range of clusters: 225 

1≤ k ≤ Kmax          (12) 226 

Kmax=F(I, Ti, n)         (13) 227 

 228 

The constraint expressed by (4) provided the total number of significant explanatory 229 

variables, including intercepts for all the clusters. The sum of elements in each column of the 230 

binary matrix, V, of size (J+1 x K) provided the number of significant explanatory variables and 231 

an associated intercept for a particular cluster.  According to the constraint expressed by (5), the 232 

element 𝑣𝑣𝑗𝑗𝑗𝑗 was equal to ‘1’ if an estimated coefficient (𝛽𝛽𝑗𝑗𝑗𝑗) was significant in cluster k; 233 

otherwise, 𝑣𝑣𝑗𝑗𝑗𝑗 was ‘0’ (Eq. 5). The significance of an explanatory variable as well as an intercept 234 

was determined by using the p-value of its estimated regression coefficient. 235 

Constraints expressed by (6) and (7) ensured that a pavement sample was assigned 236 

exclusively to a single cluster. A binary indicator variable, 𝑝𝑝𝑖𝑖𝑖𝑖, was used to define the 237 



membership of a sample. Indicator 𝑝𝑝𝑖𝑖𝑖𝑖 equaled ‘1’ if and only if a pavement sample 𝑖𝑖 belonged 238 

to cluster k. Otherwise, 𝑝𝑝𝑖𝑖𝑖𝑖 was ‘0’. 239 

The feasibility of the resulting clustering was guaranteed by constraints expressed by (8) 240 

- (11). Constraints expressed by (8) – (10) prevented the overlap of members among clusters; 241 

that is, pavement samples were divided exclusively into K clusters. Constraint (11) warranted 242 

that the number of observations for each cluster was no less than the minimum number of 243 

observations, n, in order to obtain the statistically reliable estimation of coefficients. 244 

Constraints expressed by (12) and (13) were used to prevent a search beyond a feasible 245 

number of clusters. If the pavement sample had more than n observations, the sample alone 246 

could form a cluster. In reality, none of the pavement samples had more than n observations. 247 

Hence, samples were grouped into clusters to provide enough observations. All observations of a 248 

sample needed to be assigned to the same cluster.  249 

The constraint expressed by (13) denoted the maximum number of feasible clusters. A 250 

procedure to calculate this maximum number was denoted by function F (Khadka et al., 2017).  251 

The procedure iteratively searched for the best combinations of the pavement samples to form a 252 

cluster such that each cluster had the required minimum number of observations. In the first step, 253 

it searched pavement samples with n or more observations. In this case, each pavement sample 254 

could form a cluster and was assigned to an individual cluster. Once all such cases were 255 

searched, the procedure searched two or more pavement samples, where a total number of 256 

observations equaled to n. In this step, all possible combinations of pavement samples with a 257 

total number of observations equal to n were searched to find the maximum number of 258 

combinations. No sample could be assigned to more than one cluster. After assigning all possible 259 



combinations, the algorithm seeks for the combination(s) of samples having the minimal number 260 

of extra observations in each cluster.  261 

Solution to the mathematical program 262 

This study integrated Simulated Annealing (SA) (Krickpatrick et al. 1983; Cěrny, 1985) with 263 

Ordinary Least Square (OLS) to solve the proposed mathematical program, which is described as 264 

follows by means of algorithmic steps and a discussion regarding the details. SA was chosen 265 

because it provides a probabilistic mechanism to seek a global optimum in a large search space 266 

that involves discrete variables, such as cluster membership. Thus, SA was used to determine the 267 

cluster memberships (𝑝𝑝𝑖𝑖𝑖𝑖) of the pavement samples. For each accepted cluster, the VIF for all 268 

explanatory variables were calculated as discussed in the introduction. Highly correlated 269 

explanatory variables that had VIFs greater than a predefined limiting VIF were excluded. All-270 

subset regressions were utilized to find the best model and to estimate the associated regression 271 

coefficients (𝛽𝛽𝑗𝑗𝑗𝑗). BIC and the level of significance, α, were used as the criteria to select the best 272 

model. Hence, selected models included only significant explanatory variables at a given α. 273 

The algorithm utilized to solve the proposed mathematical program is described as 274 

follows, and is illustrated in Figure 2.  275 

Step 1. Set K = 2, 𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = infinity, and N = 1. 276 

Step 2. Calculate the maximum number of feasible clusters, 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚, utilizing function F, 277 

described above, as part of the constraint expressed by (13). 278 

Step 3. For a given K, randomly assign pavement samples into clusters using the following 279 

steps: 280 



Step 3.1. Generate a random number 𝑢𝑢~𝑈𝑈(1, 𝐾𝐾) and assign it to each of the pavement 281 

sample used for the estimation of CLR models. When a sample is assigned to a 282 

cluster, all observations associated with that sample are assigned to this cluster. 283 

Step 3.2. Find the total number of observations assigned to each of the clusters, (i.e., 1 to 284 

K).  285 

Step 3.3. If all the clusters have at least n observations, then go to Step 4; otherwise, repeat 286 

Steps 3.1 and 3.2 until all the clusters have at least n observations. Let 𝐶𝐶𝐾𝐾
𝑁𝑁 ∀ 1 ≤287 

𝑘𝑘 ≤ 𝐾𝐾 be the valid initial clusters. 288 

Step 4. All-subset regression: Repeat the following steps for all K clusters. 289 

Step 4.1. Calculate VIF for all explanatory variables. Exclude variables that have 𝑉𝑉𝑉𝑉𝑉𝑉 >290 

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. Let 𝐽𝐽 be the set of explanatory variables with 𝑉𝑉𝑉𝑉𝑉𝑉 < 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚. 291 

Step 4.2. Generate all possible 2|𝐽𝐽| − 1 subsets of 𝐽𝐽.  292 

Step 4.3. Estimate 𝛽𝛽𝑗𝑗𝑗𝑗 for all subsets, using OLS, and calculate BIC for all the models. 293 

Step 4.4. Rank models in ascending order, using BIC. 294 

Step 4.5. Select the model that has the minimum BIC and all significant explanatory 295 

variables with p-value < α. 296 

Step 5. Calculate the total number of free parameters to be estimated, (δ+K-1). Calculate BIC 297 

using Eq. 2. 298 

Step 6. Using the following steps, generate valid neighborhood clusters near to the previous 299 

ones. 300 

Step 6.1. Select 𝑁𝑁𝑝𝑝𝑝𝑝 pavement samples randomly. For each of the selected samples, assign a 301 

new membership by generating a random number 𝑢𝑢1~𝑈𝑈(1, 𝐾𝐾). If the new 302 

membership is the same as previously, regenerate a random number 𝑢𝑢2~𝑈𝑈(1, 𝐾𝐾) 303 



until a different outcome is obtained. Repeat this process until the memberships of 304 

all selected samples are different from those previously assigned. 305 

Step 6.2. If all clusters have at least n observations, go to Step 7; otherwise, repeat Step 6.1. 306 

until all clusters have at least n observations. Let 𝐶𝐶𝐾𝐾
𝑁𝑁+1 be the new set of valid 307 

neighborhood clusters. 308 

Step 7. For 𝐶𝐶𝐾𝐾
𝑁𝑁+1, repeat Step 4 to estimate 𝛽𝛽𝑗𝑗𝑗𝑗 for all K clusters. 309 

Step 8. Calculate the total number of free parameters to be estimated, (δ+K-1), and evaluate 310 

𝐵𝐵𝐵𝐵𝐵𝐵𝐾𝐾
𝑁𝑁+1, using the Eq. 2. 311 

Step 9. Search of a solution. 312 

Step 9.1. Calculate ∆𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐾𝐾
𝑁𝑁+1 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐾𝐾

𝑁𝑁. 313 

Step 9.2. Check the following two conditions: 314 

a. If ∆𝐵𝐵𝐵𝐵𝐵𝐵 < 0 , accept current set of clusters, 𝐶𝐶𝐾𝐾
𝑁𝑁+1, and the corresponding 𝛽𝛽𝑗𝑗𝑗𝑗; go 315 

to Step 10, otherwise, go to Step b. 316 

b. Generate a random number 𝑢𝑢"~𝑈𝑈(0,1). Calculate the acceptance probability, 317 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−∆𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵∗𝑇𝑇

�, where B is the Boltzmann’s constant. If 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 > 𝑢𝑢", 318 

accept the current set of clusters, 𝐶𝐶𝐾𝐾
𝑁𝑁+1, and the corresponding 𝛽𝛽𝑗𝑗𝑗𝑗. Go to Step 10; 319 

otherwise, return to Step 6. 320 

Step 10. Counter and temperature update. 321 

Step 10.1. Repeat Steps 6 to 9 for 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 times.  322 

Step 10.2. If 𝜃𝜃 < 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚, stop the algorithm. Otherwise, reduce the temperature by 323 

multiplying the current temperature by λ, set N =1, and go to Step 6. 324 

Step 11. Stopping criteria. 325 

Step 11.1. Update 𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 with the smallest between the values obtained in Step 10 and the 326 



current 𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚. Set 𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐾𝐾.  327 

Step 11.2. Repeat Steps 3 to 10 for 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 − 1 times. 328 

To seek a global solution, this algorithm used a probabilistic approach during the search 329 

process. The initial solution was improved repetitively by making small changes until a better 330 

solution was obtained (Sridhar and Rajendran 1993; Johnson et al. 1989). The algorithm 331 

accepted better solutions as well as non-improving (worse) solutions at a certain probability 332 

(Dolan et al. 1989; Rutenbar 1989; Aarts et al. 2005). This probability decreased continuously 333 

over iterations, and depended on 1) the difference between the BICs of the current solution and a 334 

newly selected solution, and 2) the current temperature (Nikolaev and Jacobson 2010).  335 

Initially, at a high temperature, the algorithm accepted worse solutions, which caused 336 

larger increments in BIC. As the temperature went down, the algorithm accepted worse solutions 337 

with relatively smaller increments in BIC. Finally, when the temperature dropped to zero, the 338 

algorithm no longer accepted worse solutions. This enabled occasional ‘uphill’ moves that helped 339 

the algorithm to escape from the local minima. Thus, the algorithm tried to explore the entire 340 

solution space to seek for a global solution (Dolan et al. 1989). Previous studies have shown that 341 

the algorithm converged to a global minimum when an infinitely slow cooling schedule was 342 

utilized (Román-Román et al. 2012). 343 

Application of CLR Models 344 

Luo and Chao (2008) proposed a procedure to apply CLR models to estimate pavement 345 

conditions. However, the proposed procedure applies only for cases when pavement age is the 346 

only independent variable. In addition, the procedure cannot be used to estimate the condition of 347 

a pavement sample that was not used to develop the CLR model. In other words, the procedure 348 



cannot be used to determine the cluster memberships of the pavement samples that are not 349 

included in the estimation process. 350 

To address this issues, this study proposed a heuristic to closely assign the cluster 351 

membership to a pavement sample. It was assumed that the new sample had observations for all 352 

the explanatory variables included in the estimated CLR models as well as the dependent 353 

variable (i.e. PSI), for at least one year. The following procedure could be used to estimate PSI 354 

using CLR models and the observations for a pavement sample: 355 

1. Estimate 𝑃𝑃𝑃𝑃𝑃𝑃� 𝑡𝑡
𝑘𝑘 separately for all T observations of a sample, using each of the K 356 

estimated CLR models. 357 

2. Calculate the overall sum of squared error (SSE) for each of the models, ∑ ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
𝑘𝑘

𝑘𝑘 =358 

∑ �𝑃𝑃𝑃𝑃𝑃𝑃� 𝑡𝑡
𝑘𝑘 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

𝑘𝑘�
2

𝑘𝑘  359 

3. The sample is assigned to the model associated with the least overall SSE.   360 

EXPERIMENT AND RESULTS 361 

Data 362 

Experiments were performed using the Pavement Management System (PMS) of the Nevada 363 

Department of Transportation (NDOT). The data included condition monitoring and roadway 364 

inventory data collected throughout the entire State of Nevada. Potential explanatory variables 365 

used in this study could be divided as follows: 366 

1. Continuous explanatory variables: 367 

• age - pavement age since the last M&R treatment; 368 

• adt - average daily traffic in one direction; 369 

• trucks - average daily trucks in one direction; 370 



• elevation - midpoint elevation of a segment; 371 

• precip - average annual precipitation (cm/yr); 372 

• min_temp - minimum average annual temperature (0C); 373 

• max_temp - maximum average annual temperature (0C); 374 

• wet_days - total number of wet days in a year; 375 

• freeze_thaw - total number of freeze-thaw cycles that a pavement experienced in a 376 

year; 377 

• rut_depth - average ride rut depth (cm); 378 

2. Categorical explanatory variables: 379 

• Two dummy variables for the number of lanes were encoded as: 380 

o lane ≤ 2 was equal to ‘1’ if the pavement sample had two or less lanes and 381 

zero otherwise, and  382 

o lane ≥ 3 was equal to ‘1’ if the pavement sample had three or more lanes 383 

and zero otherwise. 384 

• NDOT classifies pavement samples under  385 

o The Interstate Route (IR),  386 

o The National Highway System (NHS), or  387 

o The Surface Transportation Program (STP).  388 

Two dummy variables, nhs and stp, were encoded as: nhs was equal to ‘1’ if a 389 

segment belonged to the NHS; otherwise, nhs was equal to ‘0’. Similarly, stp was 390 

equal to ‘1’ if a segment belonged to STP; otherwise, stp was equal to ‘0’.  391 

• NDOT grouped its roadway network into five prioritization categories, 1- 5, using 392 

such factors as facility type and traffic volumes (NDOT, 2011). The type and 393 



frequency of maintenance and rehabilitation (M&R) activities vary among these 394 

prioritization categories. Four dummy variables – category=2, category=3, 395 

category=4, and category=5 – were encoded as:  396 

o category=2 was equal to ‘1’ if the pavement sample is under Prioritization 397 

Category 2, ‘0’ otherwise; and 398 

o category=3 was equal to ‘1’ if the pavement sample was under 399 

Prioritization Category 3, ‘0’ otherwise.  400 

The same approach was used for the other three dummy variables.  401 

• Code of Federal Regulations (CFR) Title 23 part 470 mandates state agencies to 402 

identify the functional class of roads and streets. NDOT divided its roadway network 403 

into seven functional classes: (i) Interstate and Highway, (ii) Other Freeways and 404 

Expressway, (iii) Principal Arterial-Other, (iv) Minor Arterial, (v) Major Collector, 405 

(vi) Minor Collector, and (vii) Local. Six dummy variables – f_class=2, f_class=3, 406 

f_class=4, f_class=5, f_class=6 and f_class=7 – were encoded as follows:  407 

o f_class=2 was equal to ‘1’ if the pavement sample was an Interstate and 408 

Highway, ‘0’ otherwise;  409 

o f_class=3 was equal to ‘1’ if the pavement sample was classified as Other 410 

Freeways and Expressway, ‘0’ otherwise.  411 

The same approach was used for the other four dummy variables. 412 

A total of 4,138 samples – including 14,638 observations from 2001 to 2010 and 3,005 413 

observations from 2011 and 2012 – were available for model estimation and validation, 414 

respectively. Table 1 illustrates a subset of data used in the experiments. 415 



Estimation parameters 416 

The existing literature does not provide hard-and-fast rules to define the limiting VIF beyond the 417 

one that indicates a serious multicollinearity problem (Petraitis et al. 1996). Many studies (Myers 418 

1990; Neter et al. 1996; Chatterjee and Hadi 2000) suggested that a multicollinearity problem 419 

was serious if the VIF was greater than 10. In this study, all explanatory variables with VIF > 10 420 

were excluded from the final models. Other estimation parameters that were required were set by 421 

using previous experience (Paz et al. 2015a; Paz et al. 2015b) and sensitivity analyses. Table 2 422 

provides the parameter values used in this study.  423 

Experiment results and discussion 424 

Function F in the constraint expressed by (13) was used to determine the maximum number of 425 

feasible clusters for the dataset used in this study. The algorithm found that 16 was the maximum 426 

number of feasible clusters that fulfilled the requirements imposed by the constraints for feasible 427 

partitions. 428 

The solution algorithm proposed in the section, Solution to the Mathematical Program, 429 

sought for the optimum number of clusters by exploring each of all feasible clusters (i.e., K = 2 430 

to 16). Thus, the algorithm determined that 6-cluster CLR models provided the optimum solution 431 

with the lowest BIC. Figure 3a shows the BIC trend over the number of clusters that were 432 

considered in this experiment. Figure 3b shows the convergence of the objective function, BIC, 433 

over iterations when the six-cluster CLR models were used. After 983 iterations, the BIC 434 

decreased from the initial value of 9,283 to the final value of 6,443, with an improvement of 435 

31%. 436 

Coefficients for the variables, trucks and freeze_thaw, were positive. This is counter-437 

intuitive because a pavement deteriorates faster when it is subjected to heavy trucks and frequent 438 



freeze-thaw cycles. Hence, additional data analysis was performed to investigate the data quality. 439 

The analysis showed average positive trends of PSI for these variables; this could be because 440 

pavements having a larger number of trucks and freeze-thaw cycles often are designed to have 441 

stronger pavement structures, and are continuously maintained. This research did not use any 442 

explanatory variable that relates PSI to pavement structure. Hence, trucks and freeze_thaw, 443 

which were likely to be positively correlated with missing information, such as pavement 444 

structure, may have captured this hidden effect. There could be other reasons for the positive 445 

coefficients for trucks and freeze-thaw; however, this investigation did not find enough evidence 446 

to justify these positive trends. Hence, these two variables were excluded from the models, and 447 

new model parameters were estimated. The effect of these two variables was discussed in 448 

Khadka and Paz (2017a). Future research is recommended to investigate this issue. Table 3 449 

provides the estimated parameters for 6-cluster models. 450 

This study used a 5% significance level. Results showed that seven explanatory variables 451 

– elevation, precip, min_temp, max_temp, wet_days, nhs, and stp – were not included in any of 452 

the final estimated 6-cluster models. As the constraints for significant variables were imposed, 453 

the algorithm excluded these seven variables because they were either associated with high VIF, 454 

causing multicollinearity, or were statistically insignificant. Hence, the resultant models only had 455 

statistically significant explanatory variables. Table 4 shows the binary matrix, V, associated with 456 

the 6-cluster models estimated in this study. Each ‘1’ indicates a ‘significant’ variable for a 457 

particular cluster; ‘0’ indicates otherwise. 458 

Table 3 also includes the VIFs of the significant explanatory variables. All the VIF values 459 

were less than five, which indicated that the associated explanatory variables in each model did 460 



not have strong correlations among each other. Hence, the resultant models were free from 461 

serious multicollinearity problems. 462 

The six models included different significant explanatory variables. In addition, the 463 

common variables had different estimated coefficients. These differences indicated that 464 

pavement samples across the clusters were heterogeneous by the effect of explanatory variables, 465 

and exhibited different types of performance behavior. For example, the samples exhibited 466 

different deterioration rates as they got older. The estimated coefficients for age were -0.039 and 467 

-0.022 for Clusters #1 and #2, respectively. However, pavement samples in Clusters #1 and #2 468 

performed similarly with respect to traffic-loading conditions. That is, the estimated coefficients 469 

for adt in Clusters #1 and #2 were -0.013 and -0.012, respectively. 470 

Only four variables – intercept, age, adt, and rut_depth – were common for all six 471 

models; and all of them had a negative sign, except for the intercept. All the estimated intercept 472 

values were realistic. The PSI of a newly constructed pavement was about 4.5 (Christopher et al. 473 

2006). However, the intercepts differed across the models. The negative signs of age and adt 474 

indicated that the conditions deteriorated when a pavement became older and was subjected to 475 

greater traffic loadings, respectively. Similarly, the PSI of a pavement sample decreased as 476 

rutting along the pavement became deeper. 477 

It was observed that Clusters #2 to #5, which had as significant variables category=2, 478 

category=3, category=4, and category=5, also had variables lane≤2 and lane≥3 as significant. In 479 

contrast, the variable f_class was not significant in these clusters. The estimated coefficients of 480 

the variables category=2, category=3, category=4, and category=5 were negative, and the 481 

coefficient increased as the category level went up. This indicated that the average PSIs in these 482 

four category levels (i.e., from 2 to 5) were smaller than for that of Category 1, and decreased as 483 



the level went up. This was expected, because NDOT assigned the highest priority – in terms of 484 

maintaining good conditions – to the roadway segments identified as Category 1 and the lowest 485 

priority to the roadway segments identified as Category 5 (NDOT 2011). The variable f_class 486 

was significant only in Clusters 1 and 6.  The coefficients for all six classes were negative, 487 

except for the f_class=2 in Cluster 6. A positive sign indicated that the pavement samples 488 

classified as Class 2 had a higher average PSI than for the segments classified as Class 1. It also 489 

was observed that for both clusters, the coefficient increased as the class number went up, except 490 

for the f_class=7. A possible reason was that the estimation was based on only 44 observations 491 

(Functional Class 7), which might not represent actual conditions. 492 

Model performance 493 

In CLR, minimizing overall SSE translates the maximization of variations in the dependent 494 

variable explained by clustering process and regression models (Brusco et al. 2008). CLR does 495 

not differentiate between the variations explained by the clustering process and variations 496 

explained by regression models. Hence, in some cases, variation in the dependent variable could 497 

be minimized by the clustering process even if variations explained by the regression models are 498 

small. This creates a potential for overfitting the data in cases when regression relationships are 499 

not strong. 500 

Brusco et al. (2008) proposed a procedure to diagnose the presence of overfitting in the 501 

resultant CLR models. Five different metrics were calculated for the optimum 6-cluster models, 502 

and are included in Table 5. The results showed that the between-clusters sum of squares 503 

(BCSS), which represent the variations explained by the clustering process, was equal to ‘4’, 504 

which is less than 1% of the total sum of squares (TSS). The sum of squares due to regression 505 

(SSR) was equal to 1,130, which was 47% of the within-clusters sum of squares (WCSS). The 506 



WCSS represents the sum of the variations across clusters, which is the sum of SSE and SSR. 507 

This indicated that there was no overfitting, as most of the variations in PSI was explained by 508 

within-cluster regressions. However, SSE accounted for 53% of the TSS, which indicated that 509 

the resultant models had relatively high errors, possibly due to the nature of the data. In addition, 510 

the estimated linear function might not have been the best to use in order to explain the pavement 511 

deterioration. 512 

The prediction accuracy of the models was evaluated by calculating the RMSE, the 513 

normalized root-mean-square error (NRMSE), and the mean absolute error (MAE), using (14), 514 

(15), and (16), respectively: 515 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦�𝑖𝑖𝑖𝑖)2𝜂𝜂
𝑖𝑖 𝜂𝜂⁄         (14) 516 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

          (15) 517 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝜂𝜂

∑ |𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑖𝑖|𝜂𝜂
1         (16) 518 

where 𝑦𝑦𝑖𝑖𝑖𝑖 = the observed PSI,  𝑦𝑦�𝑖𝑖𝑖𝑖 = the predicted PSI, ymax = the maximum observed PSI, ymin = 519 

the minimum observed PSI, and η = the number of predictions. The estimated model coefficients 520 

were applied to the test dataset described in the Data section to estimate PSIs for 2011 and 2012. 521 

The overall RMSE, NRMSE, and MAE values for all the models were 0.47, 0.17, and 0.36, 522 

respectively. This indicated that the resultant models were robust.  523 

In addition, to diagnose the variation in the prediction errors, the RMSE, NRMSE, and 524 

MAE were calculated separately for all six models. Table 6 provides the RMSE, NRMSE, and 525 

MAE values for all the models as well as the individual models. It was observed that the 526 

differences between RMSE and MAE values were approximately equal for all the models, which 527 

indicated that the prediction errors were well distributed among the clusters. 528 



Figure 4a shows a scattered plot of predicted versus observed PSIs for 2011 and 2012. 529 

The degree of prediction error of the models was reflected by the relative positions of the data 530 

points from the 450 line. Data points above the 450 line were over-predicted, while those under 531 

the 450 line were under-predicted. Results indicated that the predicted PSIs ranged from 2.70 to 532 

4.42, whereas the observed PSIs ranged from 1.64 to about 4.44. In particular, the CLR models 533 

overestimated PSIs that were at the lower end of the data. Possible reasons for overestimation 534 

could be that this study did not include any explanatory variables that captured the pavement 535 

structure. In addition, improvements by routine maintenance activities were ignored.  536 

Figure 4b provides the percentages of observations that were within different ranges of 537 

error. For example, about 74% of the total number of predictions were contained within a ±15% 538 

range of error. Figure 5 shows individual scattered plots of predicted versus observed PSIs for all 539 

six models. 540 

CONCLUSIONS AND RECOMMENDATIONS 541 

In this paper, a comprehensive mathematical program is proposed to estimate PPMs that 542 

minimize the estimation error by simultaneously finding 1) the optimum number of pavement 543 

clusters, 2) cluster memberships of the samples, 3) cluster-specific significant explanatory 544 

variables, and 4) regression coefficients. To solve the mathematical program, Simulated 545 

Annealing integrated with All-subset regression was implemented. The algorithm has the 546 

capability to identify potential explanatory variables that cause serious multicollinearity in a 547 

model.  548 

VIF was used to measure the effect of multicollinearity in a model. In this study, 549 

multicollinearity was addressed using a traditional approach where correlated variables were 550 

removed one at a time until the effect of multicollinearity became minimal. However, a better 551 



way to address multicollinearity is to consider the trade-off between removing and keeping 552 

potential explanatory variables that are expected to cause multicollinearity. Future research is 553 

recommended to integrate such an experiment in the CLR framework. 554 

After addressing the multicollinearity issue, the proposed algorithm identified the 555 

relevant explanatory variables to be included in the models. All possible combinations of the 556 

explanatory variables were evaluated to select the best model for each cluster. Hence, the 557 

estimated CLR models included cluster-specific significant explanatory variables that were free 558 

from multicollinearity. 559 

The algorithm explored all the feasible clusters that could be formed for the data used in 560 

the experiments, and found that 6-cluster models were the optimum solution. The algorithm 561 

determined the significant explanatory variables to be traffic-loading conditions of both ADT and 562 

the number of trucks, age, rut-depth, function class, prioritization category, freeze-and-thaw 563 

cycles, and the number of lanes. In the literature, all these variables were considered to be the 564 

most critical factors for pavement deterioration (Saraf and Majidzadeh 1992; Prozzi and Madanat 565 

2004; Kim and Kim 2006; Salama et al. 2006). Both the magnitude and sign of the estimated 566 

regression coefficients were as expected, and were realistic. This indicates that the proposed 567 

algorithm was very effective when selecting the explanatory variables that were relevant. 568 

The estimated CLR models first were analyzed to investigate the presence of overfitting, 569 

and the results showed that the models did not possess any overfitting issues. To investigate the 570 

predictive capability of the models, RMSE, NRMSE, and MAE were calculated for all the 571 

models as well as for individual models. The overall RMSE, NRMSE, and MAE values of 0.47, 572 

0.17, and 0.36, respectively, indicated that the estimated models had small estimation errors. In 573 

addition, the results showed that both the differences between the RMSE and MAE values for all 574 



six models were approximately equal, which indicated that the prediction error was well 575 

distributed among the models. Even so, the models still were associated with prediction errors. 576 

The linear functional form used in this study did not exactly fit the data used in the 577 

experiments. Hence, it would be worth investigating the proposed methodology by using 578 

nonlinear relationships between pavement performance measures and multiple explanatory 579 

variables. Various forms of power and sigmoidal models (Sadek et al. 1996; Luo and Chou 2006; 580 

Zhang and Durango-Cohen 2014; and Chen and Mastin 2015) could be investigated. 581 

Finally, the results indicated that each cluster had almost an equal number of members 582 

(i.e., pavement samples). However, it is unlikely that the underlying clusters had equally 583 

distributed pavement samples. An interesting aspect worthy of investigation would be to explore 584 

the likelihood of distribution of the pavement samples and the associated physical characteristics. 585 

Further investigation would be required to identify any dominant explanatory variables of the 586 

pavement samples that define a cluster. 587 

This study also proposed a heuristic to assign cluster membership to a pavement sample. 588 

It was assumed that a new sample had observations for all explanatory variables included in the 589 

estimated CLR models as well as the dependent variable (i.e. PSI). Future research is 590 

recommended to develop a procedure to assign cluster membership to pavement samples that 591 

were not included during model estimation and lack data about the dependent variable. 592 

The proposed algorithm was designed to search for a global minimum; however, a large 593 

amount of computational time is required. Another avenue for future research would be to 594 

develop faster and more efficient combinatorial algorithms that would guarantee global 595 

optimality. 596 
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NOTATION 604 

The following symbols are used in this paper: 605 

I = Number of pavement samples in the network; 606 

i = Subscript for a pavement sample in the network, 𝑖𝑖 ∈ 𝐼𝐼; 607 

𝑇𝑇𝑖𝑖 = Number of observation periods for a pavement sample i; 608 

t = Subscript for an observation period for a pavement sample i, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖; 609 

O = Total number of observations = ∑ 𝑇𝑇𝑖𝑖
𝐼𝐼
𝑖𝑖  ∀ 𝑖𝑖 ∈ 𝐼𝐼; 610 

J = Number of explanatory variables; 611 

j = Subscript for an explanatory variable including an intercept, 𝑗𝑗 = 0, … , 𝐽𝐽 612 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖= Measurement of an explanatory variable j for a sample 𝑖𝑖 at observation period 𝑡𝑡 that is 613 

assigned to a cluster k  ∀  𝑖𝑖 ∈ 𝐼𝐼, 𝑗𝑗 ∈ 𝐽𝐽, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖; 614 

𝑦𝑦𝑖𝑖𝑖𝑖= Measurement of dependent variable for a sample 𝑖𝑖 at observation period 𝑡𝑡 that is assigned to 615 

a cluster k  ∀  𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖; 616 

K = Optimum number of clusters (1 ≤ 𝑘𝑘 ≤ 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚); 617 

k = Subscript for a cluster, 𝑘𝑘 ∈ 𝐾𝐾; 618 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = Maximum number of potential clusters that could be formed using the given data; 619 



n = Minimum number of observations required in a cluster; 620 

𝐶𝐶𝑘𝑘 = Set of pavement samples that are assigned to cluster k ∀ k ∈ K; 621 

δ = Total number of significant explanatory variables including intercepts in all clusters; 622 

𝑣𝑣𝑗𝑗𝑗𝑗 = Binary indicator that represents significance of an explanatory variable including an 623 

intercept in a cluster k ∀ 𝑗𝑗 = 0, … , 𝐽𝐽, 𝑘𝑘 ∈ 𝐾𝐾; 624 

𝑝𝑝𝑖𝑖𝑖𝑖 = Cluster membership of a pavement sample 𝑖𝑖 to a cluster k, ∀  𝑖𝑖 ∈ 𝐼𝐼, 𝑘𝑘 ∈ 𝐾𝐾; 625 

𝛽𝛽𝑗𝑗𝑘𝑘 = Estimated regression coefficient for an explanatory variable j including an intercept in 626 

cluster k ∀  𝑗𝑗 = 0, … , 𝐽𝐽, 𝑘𝑘 ∈ 𝐾𝐾; 627 
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Table 1. A Subset of Data used in the Experiments 844 

Sample ID 1 2 
Year 2001 2002 2003 2004 2001 2002 2003 2004 
psi 3.82 3.73 3.71 3.62 3.96 3.88 3.86 3.53 
age 0 1 2 3 0 1 2 3 
adt 725 825 950 950 725 825 950 950 
trucks 20 20 19 20 20 20 19 20 
elevation 4750 4750 4750 4750 4750 4750 4750 4750 
precip 8.25 8.25 6.65 6.65 6.65 6.65 6.65 6.65 
min_temp 33 33 36 36 36 36 36 36 
max_temp 65 65 67 67 67 67 67 67 
wet_days 45 45 41 41 41 41 41 41 
freeze_thaw 176 176 154 154 154 154 154 154 
rut_depth 0.09 0.08 0.08 0.09 0.01 0.01 0.01 0.01 
lane≤2 1 1 1 1 1 1 1 1 
lane≥3 0 0 0 0 0 0 0 0 
nhs 0 0 0 0 0 0 0 0 
stp 1 1 1 1 1 1 1 1 
f_class=2 0 0 0 0 0 0 0 0 
f_class=3 0 0 0 0 0 0 0 0 
f_class=4 0 0 0 0 0 0 0 0 
f_class=5 1 1 1 1 1 1 1 1 
f_class=6 0 0 0 0 0 0 0 0 
f_class=7 0 0 0 0 0 0 0 0 
Category=2 0 0 0 0 0 0 0 0 
Category=3 1 0 0 0 0 0 0 0 
Category=4 0 1 1 1 0 1 1 1 
Category=5 0 0 0 0 0 0 0 0 
  845 



Table 2. Estimation Parameters Used in the Experiments 846 

Parameter Value Remarks 
𝜃𝜃0 10 Initial temperature 
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 10e-17 Final minimum temperature 
B 30 Boltzmann constant 
λ 0.97 Cooling rate 
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 5 Number of neighborhood solutions generated at each temperature level 
𝑛𝑛 800 Minimum number of observations required in a cluster 
𝑁𝑁𝑝𝑝𝑝𝑝 100 Number of pavement samples, which memberships were changed to 

generate a neighborhood cluster 
𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 10 Limiting VIF 
α 5% Level of Significance 
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Table 3. Estimated Model Parameters using the Proposed CLR Approach 848 

Parameters 
Cluster #1 Cluster #2 Cluster #3 

𝛽𝛽𝑗𝑗1 VIF p-value 𝛽𝛽𝑗𝑗2 VIF p-value 𝛽𝛽𝑗𝑗3 VIF p-value 
intercept 4.392 - < 0.0001 4.552 - < 0.0001 4.674 - < 0.0001 
age -0.039 1.0 < 0.0001 -0.022 1.0 < 0.0001 -0.028 1.0 < 0.0001 
adt† -0.013 1.2 < 0.0001 -0.012 1.8 < 0.0001 -0.008 2.2 < 0.0001 
rut_depth -1.293 1.1 < 0.0001 -2.814 1.1 < 0.0001 -3.338 1.1 < 0.0001 
lane≤2 - - - -0.191 4.4 < 0.0001 -0.358 4.4 < 0.0001 
lane≥3 - - - -0.202 1.8 < 0.0001 -0.289 2.5 < 0.0001 
f_class=2 -0.185 1.0 0.002 - - - - - - 
f_class=3 -0.110 1.6 < 0.0001 - - - - - - 
f_class=4 -0.259 1.5 < 0.0001 - - - - - - 
f_class=5 -1.052 1.4 < 0.0001 - - - - - - 
f_class=6 -1.181 1.1 < 0.0001 - - - - - - 
f_class=7 -0.284 1.0 0.006 - - - - - - 
category=2 - - - -0.202 2.6 < 0.0001 -0.325 2.8 < 0.0001 
category=3 - - - -0.323 4.2 < 0.0001 -0.465 4.4 < 0.0001 
category=4 - - - -0.664 2.6 < 0.0001 -0.684 2.9 < 0.0001 
category=5 - - - -1.149 2.8 < 0.0001 -0.808 2.8 < 0.0001 
No. of Obs. 2,376 2,483 2,442 
BIC 658 1,069 1,470 
    

Parameters 
Cluster #4 Cluster #5 Cluster #6 

𝛽𝛽𝑗𝑗4 VIF p-value 𝛽𝛽𝑗𝑗5 VIF p-value 𝛽𝛽𝑗𝑗6 VIF p-value 
intercept 4.605 - < 0.0001 4.557 - < 0.0001 4.401 - < 0.0001 
age -0.033 1.0 < 0.0001 -0.028 1.0 < 0.0001 -0.037 1.0 < 0.0001 
adt† -0.006 1.8 < 0.0001 -0.005 2.2 < 0.0001 -0.013 1.4 < 0.0001 
rut_depth -3.706 1.1 < 0.0001 -3.289 1.1 < 0.0001 -2.291 1.0 < 0.0001 
lane≤2 -0.213 4.8 < 0.0001 -0.260 4.9 < 0.0001 - - - 
lane≥3 -0.405 1.9 < 0.0001 -0.294 2.4 < 0.0001 - - - 
f_class=2 - - - - - - 0.468 1.2 < 0.0001 
f_class=3 - - - - - - -0.086 1.5 < 0.0001 
f_class=4 - - - - - - -0.258 1.4 < 0.0001 
f_class=5 - - - - - - -0.864 1.3 < 0.0001 
f_class=6 - - - - - - -1.288 1.1 < 0.0001 
f_class=7 - - - - - - -0.634 1.0 < 0.0001 
category=2 -0.263 3.0 < 0.0001 -0.194 2.7 < 0.0001 - - - 
category=3 -0.325 4.0 < 0.0001 -0.287 4.2 < 0.0001 - - - 
category=4 -0.650 3.2 < 0.0001 -0.639 3.1 < 0.0001 - - - 
category=5 -0.808 3.4 < 0.0001 -1.130 2.9 < 0.0001 - - - 
No. of Obs. 2,414 2,340 2,583 
BIC 1,009 1,273 870 
  Note: † = variable value in thousands, and - = Not applicable 849 
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Table 4. Binary Matrix Showing Significance of the Explanatory Variables in the Estimated 6-851 

Cluster Models 852 

 Cluster 
Explanatory Variables k = 1 k = 2 k = 3 k =4 k =5 k = 6 
intercept 1 1 1 1 1 1 
age 1 1 1 1 1 1 
adt 1 1 1 1 1 1 
elevation 0 0 0 0 0 0 
precip 0 0 0 0 0 0 
min_temp 0 0 0 0 0 0 
max_temp 0 0 0 0 0 0 
wet_days 0 0 0 0 0 0 
rut_depth 1 1 1 1 1 1 
lane≤2 0 1 1 1 1 0 
lane≥3 0 1 1 1 1 0 
nhs 0 0 0 0 0 0 
stp 0 0 0 0 0 0 
f_class=2 1 0 0 0 0 1 
f_class=3 1 0 0 0 0 1 
f_class=4 1 0 0 0 0 1 
f_class=5 1 0 0 0 0 1 
f_class=6 1 0 0 0 0 1 
f_class=7 1 0 0 0 0 1 
Category=2 0 1 1 1 1 0 
Category=3 0 1 1 1 1 0 
Category=4 0 1 1 1 1 0 
Category=5 0 1 1 1 1 0 
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Table 5. Metrics Calculated to Investigate the Presence of Overfitting in the Models 854 

Metric Value Remarks 
TSS 2,419 - 
BCSS 4 0.17% of TSS 
WCSS 2,415 - 
SSR 1,130 47% of WCSS 
SSE 1,284 53% of TSS 
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Table 6. RMSE, NRMSE, and MAE for Each Cluster 856 

Metric 
Cluster 

Overall 
1 2 3 4 5 6 

RMSE 0.47 0.46 0.49 0.47 0.48 0.49 0.47 
NRMSE 0.18 0.18 0.18 0.17 0.18 0.19 0.17 
MAE 0.37 0.37 0.37 0.35 0.36 0.38 0.36 
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